NON-DESTRUCTIVE PREDICTION OF SOLUBLE SOLID CONTENT IN KIWIFRUIT BASED ON VIS/NIR HYPERSPECTRAL IMAGING
基于可见/近红外高光谱成像无损预测猕猴桃可溶性固形物含量
DOI : https://doi.org/10.35633/inmateh-70-42
Authors
(*) Corresponding authors:
Abstract
Soluble solid content (SSC) is a major quality index of kiwifruits. Visible near-infrared (Vis/NIR) hyperspectral imaging with the genetic algorithm (GA) was adopted in this study to realize the non-destructive prediction of kiwifruit SSC. A laboratory Vis/NIR hyperspectral imaging system was established to collect the hyperspectral imaging of 120 kiwifruit samples at a range of 400–1100 nm. The average reflectance spectral data of the region of interest of the kiwifruit hyperspectral imaging were obtained after different preprocessing method, namely, Savitzky–Golay smoothing (SG), multiplicative scatter correction (MSC), and their combination method. The prediction models of partial least squares regression, multiple linear regression, and least squares support vector machine (LS-SVM) were built for determining kiwifruit SSC by using the average reflectance spectral data and effective feature wavelength variables selected by GA, respectively. The results show that SG+MSC is the best preprocessing method. The precisions of the prediction models built using the effective feature wavelength variables selected by GA are higher than that established using full average reflectance spectral data. The GA-LS-SVM prediction model has a best performance with correlation coefficient for prediction (R=0.932) and standard error of prediction (SEP=0.536° Bx) for predicting kiwifruit SSC. The prediction accuracy has been improved by 5.6% compared with that of the prediction models established by using the full-band reflectance spectral data. This study provides an effective method for non-destructive detection of kiwifruit SSC.
Abstract in Chinese